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1. Introduction
In recent years, the field of computer graphics and com-
puter vision has seen significant advancements in the long-
established multi-view stereo problem, ranging from 3D
reconstruction to novel view synthesis. Last year, Kerbl et
al. (Kerbl et al., 2023) proposed Gaussian Splatting that
achieves state-of-the-art performance. This opens up a range
of opportunities for downstream applications, such as 3D
style transfer explored by this project. In this project, our
primary objective is to integrate the Contrastive Language-
Image Pre-training (CLIP) (Radford et al., 2021) model into
the Gaussian splatting process, presenting a novel approach
for artistic 3D styles. This unique application represents
a departure from existing works (Gao et al., 2023) in the
field, especially as there is currently a notable absence of
text-driven 3D style transfer within the context of Gaussian
splatting. While numerous studies (Lin et al., 2023; Tang
et al., 2023; Yu et al., 2023) have explored the realms of 3D
Gaussian splatting, this project pioneers the incorporation
of text prompts to achieve distinctive artistic styles, marking
an advancement in the intersection of language understand-
ing and 3D graphical synthesis. We propose two potential
approaches to this problem

• Given a set of images and a text prompt, we optimize
a Gaussian point cloud that achieves the artistic style
specified by the text prompt;

• Given a pre-trained Gaussian point cloud and a text
prompt, we fine-tune the Gaussian point cloud to
achieve the artistic style specified by the text prompt

Prior works have explored various techniques for improving
point cloud rendering and image synthesis. These efforts
have encompassed traditional methods like voxelization, as
well as more recent approaches that leverage deep learning
and neural networks. However, several limitations remain:

Image-Text Integration The connection between textual
descriptions and visual data has been a long-studied and
yet still ongoing field of research. Methods like StackGAN
(Zhang et al., 2017) have made strides in bridging the gap
between textual descriptions and 3D content, but further
improvements are necessary for effective image-text inte-
gration such as better generalization to image-text rendering

of photo-realistic images under arbitrary environments.

Regularization Given that Gaussian Splatting came out
very recently, few works have systematically studied adding
regularization during the training process. Most works
(Mildenhall et al., 2020) in multi-view stereo focus on opti-
mizing the 3D parameters so that the rendered images match
the reference images. In this project, we identify the possi-
bility of incorporating CLIP to enhance the overall training
process.

This project overcomes these limitations by fusing the text-
driven directives of CLIP with the advanced 3d rendering
techniques of Gaussian Splatting, propelling the field of
artistic 3d styles into unexplored categories. Please visit
our Github repository for the code: https://github.
com/zichenwang01/gaussian-splatting.

2. Related Works
Structure-from-Motion (SfM) The advent of SfM (Nyim-
bili et al., 2016) represents one of the first classic approaches
to the long-established multi-view stereo (MVS) problem.
SfM takes a batch of images as input and jointly estimates
the camera parameters and a parse point cloud. It is com-
mon for recent MVS models to run SfM first to obtain the
camera parameters, which is what Gaussian Splatting did.

Gaussian Splatting Last year, Kerbel et. al. proposed Gaus-
sian splatting (Kerbl et al., 2023) that achieves state-of-art
performance in terms of training speed, reconstruction qual-
ity, and real-time rendering. Given a set of images, Gaussian
Splatting optimizes a Gaussian point cloud through minimiz-
ing the loss between the reference images and the rasterized
images. Compared with NeRF (?) methods, the novel Gaus-
sian point cloud representation addresses the sparsity issue
of neural fields and enables faster rendering algorithms.

3D Style Transfer 3D style transfer aims to transform the
appearance of a 3D scene so that its renderings from differ-
ent viewpoints match the style of a desired image. Previous
approaches represent real-world scenes using point clouds
(Huang et al., 2021; Mu et al., 2022), triangle meshes (Yin
et al., 2021; Michel et al., 2021), or neural radiance fields
(Zhang et al., 2022). In this project, we explore the possi-
bility of using the current state-of-the-art Gaussian point
clouds in 3D style transfer.

https://github.com/zichenwang01/gaussian-splatting
https://github.com/zichenwang01/gaussian-splatting


Figure 1. Illustration of our artistic Gaussians. On the left is one of the original input images; on the right is a rendered image of the
Gaussians fine-tuned with text prompt “rococo painting of a garden.“A rococo painting of a garden with abstract elements.”

3. Methods
3.1. Joint Optimization

Gaussian Splatting first runs SfM to obtain the camera pa-
rameters and a sparse point cloud. Based on this initial point
cloud, the model repeatedly does the following

• Given a point cloud Θ, rasterizes the point cloud to
obtain images Î = R(Θ). Here R denotes the rasteri-
zation process as a function.

• Given the rasterized image Î , compute the loss, often
L1 loss, between the rasterized image and the reference
image L(Î , I). Here I denotes the reference image.

• Given the loss L, back-propagate the loss to update the
point cloud Θ.

In other words, Gaussian Splatting optimizes the following
objective

Θ∗ = argmin
Θ

L(R(Θ), I) (1)

Noticeably, the gradient back-propagation uses automatic
differentiation to compute

∂L
∂Θ

=
∂L
∂Î

· ∂R(Θ)

∂Θ
(2)

This requires the loss function to be differentiable with
respect to the images and the rasterization process to be
differentiable with respect to the point cloud. We shall keep
this in mind when modifying the loss function below.

To incorporate additional information into the optimization
process, we propose to take the rasterization image as in-
put to the CLIP model. Given a text prompt T specifying
the artistic style, the CLIP model outputs a CLIP score
CLIP(Î , T ) that tells us how well the text prompt describes
the image. We use this CLIP score as the regularization

term during optimization. This gives us the following loss
function

L(Î , I) = L1(Î , I)− kCLIP(Î , T ) (3)

Here k is a coefficient scaling the weight of the CLIP regu-
larization.

Optimizing this loss function, then, jointly optimizes the
Gaussian point cloud to align with the reference image and
the spherical harmonics to align with the text prompt. This
enables us to faithfully reconstruct the geometry as well as
artistic appearance.

3.2. Fine-Tuning

Apart from adding a regularization term and training from
scratch, we can also take a pre-trained Gaussian point cloud
and fine-tune its spherical harmonics to achieve a style-
transferred artistic appearance. Compared with jointly op-
timizing geometry and appearance, this method optimizes
only the appearance and it is thus expected to be faster.
In addition, fine-tuning is advantageous when we want to
style-transfer between multiple artistic styles. On the flip
side, fine-tuning means that we need to have a pre-trained
Gaussian point cloud to start with. Thus, both these two
methods have their merits and the choice between these two
methods depends on the specific tasks.

Fine-tuning a pre-trained Gaussian point cloud for style
transfer involves adjusting its spherical harmonics to align
with a specified artistic style. This process is distinct from
training from scratch, as it focuses solely on modifying the
appearance attributes of the point cloud, rather than its un-
derlying geometry. Mathematically, this can be represented
as follows:

Let Θ = {θ1, θ2, ..., θn} be the set of parameters of our
pre-trained Gaussian point cloud, where each θi represents
the parameters (like position, color, and density) of each



Gaussian element in the cloud. The spherical harmonics as-
sociated with these parameters, denoted as H(Θ), determine
the appearance of the rendered image.

During fine-tuning, we aim to adjust H(Θ) to match a de-
sired artistic style, specified by a text prompt T . This is
achieved by optimizing the following objective function:

Θ∗ = argmin
Θ

Lstyle(H(Θ), T ) (4)

Here, Lstyle is a loss function that measures the discrep-
ancy between the current style of the point cloud and the
style described by the text prompt T . This function can be
formulated using the CLIP model’s ability to evaluate the
similarity between text and images:

Lstyle(H(Θ), T ) = −CLIP(R(H(Θ)), T ) (5)

In this equation, R represents the rendering function that
converts the point cloud with its current spherical harmonics
into an image. The CLIP score then evaluates how well this
rendered image aligns with the text prompt T .

Fine-tuning is particularly advantageous when dealing with
multiple style transfers, as it allows for rapid adjustments
to the appearance without the need to retrain the entire
model. However, it requires a well-trained base Gaussian
point cloud as a starting point. The choice between fine-
tuning and training from scratch depends on the specific
requirements and constraints of the task at hand.

3.3. Differentiability

Given the new loss function, we shall carefully check that it
is differentiable with respect to the point cloud.

∂L
∂Θ

=
∂L1

∂Θ
+

∂

∂Θ
CLIP(R(Θ), T ) (6)

Gaussian Splatting guarantees that ∂L1

∂Θ is well-defined. This
term typically involves standard operations in neural net-
works and is well-defined under the framework of automatic
differentiation. The differentiability of this term is crucial
for applying gradient-based optimization methods effec-
tively.

The second term, involving the CLIP model, requires
a more nuanced analysis. To compute the CLIP score,
CLIP passes the text and the image into a Text Encoder
and an Image Encoder. This step outputs two vectors
u = Text Encoder(T ) and v = Image Encoder(Î) that
represent the embedding of the text/image. Finally, the
CLIP score is the dot product u · v. CLIP guarantees that
the encoders are differentiable with respect to their input,
and the dot product is also a smooth function.

However, the differentiability of the CLIP term hinges on
the differentiability of the Image Encoder with respect
to its input image Î . Assuming that the Image Encoder
is a differentiable function, as is typical in deep learning
models, the gradient ∂

∂Î
CLIP(Î , T ) is well-defined. Addi-

tionally, the rasterization process R(Θ), which converts the
point cloud to an image, also needs to be differentiable with
respect to the point cloud parameters Θ. This is a key re-
quirement for Gaussian Splatting, where the rasterization
process involves rendering the point cloud into an image.

Therefore, the overall differentiability of the loss function
L depends on the differentiability of both reconstruction
loss and the CLIP regularization term. By ensuring that
all components of the loss function are differentiable with
respect to the point cloud parameters, we can effectively
apply gradient-based optimization techniques to train the
model.

The differentiability of our new loss function is supported
by the well-defined gradients of both the reconstruction
loss and the CLIP regularization term, enabling effective
gradient back-propagation for optimizing the Gaussian point
cloud in alignment with both the reference image and the
artistic style specified by the text prompt.

4. Results
To evaluate our model qualitatively we trained a Gaussian
Splat on the common NeRF Train Data set and fine-tuned
the Gaussians using various prompts. We also compare our
model with the previous CLIP3Dstyler (Gao et al., 2023) on
the Trunk scene in the Trunk and Temples data set.

4.1. Joint Optimization vs. Fine-Tuning

Figure 2. Illustration of the joint optimization scheme. Jointly
optimizing both objectives does not lead to results that have good
structure.”

Our initial comparison reveals a significant disparity be-
tween the joint optimization and fine-tuning approaches—



joint optimization proves to be less effective. When the
CLIP loss is too small, the Gaussians remain unchanged
from the original state. In other words, attempting to mini-
mize the CLIP loss to capture specific artistic effects results
in substantial image loss. The model tends to ignore the
CLIP loss in favor of preserving the image content. Con-
versely, when the CLIP loss weight is too large, the Gaussian
rapidly transforms into a random pattern (Figure 2). In such
cases, the model prioritizes optimizing the CLIP loss, ne-
glecting the image loss. Despite the attempts to fine-tune
the weight parameter, optimization stays quite sensitive to
the weight, so conclude that fine-tuning is the more suitable
option for this task.

4.2. Artistic Effects of Fine-Tuning

To show the artistic effects of our model, we fine-tuned the
Train scene under various text prompts (Figure 3). In each
example, the overall semantics of the original image are
well-preserved. The train remains distinctly recognizable,
and finer elements, such as handrails and roadblocks, are
also retained with impressive detail. For instance, the moon
head in the “day of the dead” example, harmonizes well
with the image, conveying a sense of impending doom and
eerie nights without overpowering the original composition.
Other examples include the starfish in the undersea scene
and the plants at the head of the train in the rococo example.
Furthermore, the model demonstrates a commendable opti-
mization of places of low frequency. For example, the sky
in the original image is largely made up of the same kind
of blue, but in the “day of the dead” example, it turns into
dark blue to convey to sense of dark nights. Similarly in
the undersea example, the model introduces more variation
to the original sky, effectively portraying the vibrant and
colorful underwater world.

The model also maintains the high frequency details ex-
ceptionally well. In Figure 4, we highlight the effective
preservation of the letters on the side of the train. Although
the color of the letters has been adjusted to better align with
the desired art style, the specific number of letters remains
the same. Like many other generative models, the preser-
vation of the letters is not guaranteed in all situations, it is
worth noting our model exhibits superior performance in
this aspect compared to most generative models.

In conclusion, freezing opacity is a design choice and yields
images more faithful to the original scene, preserving details
such as the letters on the train. Additionally, freezing the
opacity results in fewer “spikes” in the image as the opti-
mized opacity allows Gaussians to blend seamlessly in the
original scene. Conversely, unfreezing the opacity provides
the model with greater creative freedom, introducing more
intricate details to the Gaussians, particularly visible at a
distance.

4.3. Comparison with Previous Methods

A key distinction between 2D image style transfer and 3D
model style transfer is the ability to effortlessly render from
novel views. This necessitates geometric consistency in
the novel views and, consequently, the assurance that the
new 3D model maintains the accurate representation of the
overall structure. In this context, we compare our approach
with previous methods to highlight the advantage of using
Gaussian point clouds as a better shape representation. The
method we compare with, CLIP3DStyler employs a more
intricate network architecture. However, its fundamental
approach aligns with ours, utilizing CLIP to train a Neural
Radiance Field (NeRF), making it a suitable benchmark for
evaluating our results. In all three instances, our results
exhibit a clear differentiation between the foreground trunk
and the background trees. Conversely, CLIP3Dstyler, in all
three cases, tends to blur the trunk head, making it hard to
distinguish it from the background. Moreover, in two out of
three cases (the purple brush and the watercolor painting),
one still retains the existence of a tree in the background.
Only in cases where trees significantly deviate from the text
prompts (the pop art of the night city) does our model trans-
form the tree into a different element. This is in contrast to
the CLIP3Dstyler, where the presence of the tree becomes
indiscernible in all three instances. Furthermore, it is note-
worthy that our model not only exhibits more artistic details
but also demonstrates superior performance in capturing the
overall art style, as seen in the purple brush case where our
trunk exhibits more brush-like textures.

5. Conclusion
Our project introduces a novel approach to artistic 3D style
transfer by seamlessly integrating the CLIP model into the
Gaussian splatting process. We redefine the landscape by
introducing a hybrid loss function that combines reconstruc-
tion and CLIP losses, ensuring the generated Gaussian splats
excel not only in geometric accuracy but also in capturing
rich visual details guided by textual prompts. Our loss func-
tion and its constituent CLIP term and reconstruction loss
also have mathematical guarantees with respect to the point
cloud allowing for efficient backpropagation for optimizing
the alignment capabilities of our model. By overcoming
the limitations of previous works and harnessing CLIP’s
robust image-text alignment capabilities, we see substan-
tial enhancements in the quality, precision, and expressive
richness of 3D data rendering and synthesis. This research
promises widespread applications across computer graph-
ics and computer vision, from 3D reconstruction to image
synthesis and styling, pushing the boundaries of the field
and paving the way for dynamic and interactive 3D environ-
ments online.
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(a) Original 3D Gaussian for Train Scene
(b) Prompt: ”A rococo painting of a garden with abstract
elements and high resolution”

(c) Prompt: ”day of the dead, in the style of unreal engine 5,
caricature-like illustrations, 32k uhd, dark atmosphere”

(d) Prompt: ”Under the sea background, Marine Life Land-
scape, Cartoon style, Disney”

Figure 3. Experiments Finetuning Gaussians

Figure 4. The Text on the side of the train stays well preserved when not fine-tuning the opacity

Figure 5. The Text on the side of the train becomes slightly warped when finetuning opacity of the Gaussian but more of the 3D structure
is modified



(a) Our Work

(b) CLIP3Dstyler

Figure 6. Prompt: ”Pop art of night city”

(a) Our Work

(b) CLIP3Dstyler

Figure 7. Prompt: ”A watercolor painting with purple brush”

(a) Our Work

(b) CLIP3Dstyler

Figure 8. Prompt: ”Watercolor painting”


